Greenhouse Gas Emissions from Calf- and Yearling-Fed Beef Production Systems, With and Without the Use of Growth Promotants
نویسندگان
چکیده
A spring calving herd consisting of about 350 beef cows, 14-16 breeding bulls, 60 replacement heifers and 112 steers were used to compare the whole-farm GHG emissions among calf-fed vs. yearling-fed production systems with and without growth implants. Carbon footprint ranged from 11.63 to 13.22 kg CO₂e per kg live weight (19.87-22.52 kg CO₂e per kg carcass weight). Enteric CH₄ was the largest source of GHG emissions (53-54%), followed by manure N₂O (20-22%), cropping N₂O (11%), energy use CO₂ (9-9.5%), and manure CH₄ (4-6%). Beef cow accounted for 77% and 58% of the GHG emissions in the calf-fed and yearling-fed. Feeders accounted for the second highest GHG emissions (15% calf-fed; 35-36% yearling-fed). Implants reduced the carbon footprint by 4.9-5.1% compared with hormone-free. Calf-fed reduced the carbon footprint by 6.3-7.5% compared with yearling-fed. When expressed as kg CO₂e per kg carcass weight per year the carbon footprint of calf-fed production was 73.9-76.1% lower than yearling-fed production, and calf-fed implanted was 85% lower than hormone-free yearling-fed. Reducing GHG emissions from beef production may be accomplished by improving the feed efficiency of the cow herd, decreasing the days on low quality feeds, and reducing the age at harvest of youthful cattle.
منابع مشابه
Modelling of Greenhouse Gas Emissions from Wheat Production in Irrigated and Rain-Fed Systems in Khorasan Razavi Province, Iran
Agriculture has a key role in greenhouse gas emissions. As such, the present study aimed to evaluate the greenhouse gas emissions from wheat production in irrigated and rain-fed systems. The primary data were collected from 116 wheat farmers. The results showed that the total greenhouse gas emissions from wheat production in irrigated and rain-fed systems were 637.8 and 65.12 kgCO2eq, respecti...
متن کاملComparison of alternative beef production systems based on forage finishing or grain-forage diets with or without growth promotants: 1. Feedlot performance, carcass quality, and production costs.
Forty Angus-cross steers were used to evaluate 5 beef cattle management regimens for their effect on growth performance, carcass characteristics, and cost of production. A 98-d growing phase was incorporated using grass silage with or without growth promotants (trenbolone acetate + estradiol implants, and monensin in the feed) or soybean meal. Dietary treatments in the finishing phase were deve...
متن کاملAnalysis of Pasture Systems to Maximize the Profitability and Sustainability of Grass-fed Beef Production
Pasture systems for grass-fed beef production in the Gulf Coast region were evaluated for profitability and sustainability over the period 2009/2010 to 2011/2012. May-weaned steers were divided into groups and randomly placed into different pasture systems. Data on input usage, output quantities, and carbon emissions were recorded and analyzed. The least complex grazing system yielded higher pr...
متن کاملCarbon footprint and ammonia emissions of California beef production systems.
Beef production is a recognized source of greenhouse gas (GHG) and ammonia (NH(3)) emissions; however, little information exists on the net emissions from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH(3) emissions from representative beef production systems in California. The IFSM is a process-le...
متن کاملUncertainties in life cycle greenhouse gas emissions from U.S. beef cattle
Beef cattle feedlots are estimated to contribute 26% of U.S. agricultural greenhouse gas (GHG) emissions, and future climate change policy could target reducing these emissions. Life cycle assessment (LCA) of GHG emissions from U.S. grain-fed beef cattle was conducted based on industry statistics and previous studies to identify the main sources of uncertainty in these estimations. Uncertainty ...
متن کامل